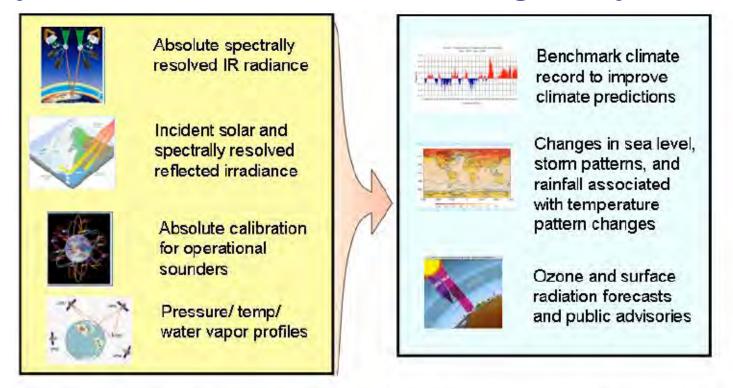



CLARREO: From a NASA Mission Architecture Perspective

Presented by: Dr. R. Baron
Contributions:
Dr. Samantha Infeld,
James Smith

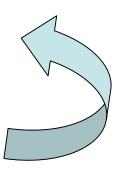


Science Goals

Source: Decadal Survey

Key climate observations obtained globally from space

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) will provide a benchmark climate record that is global, accurate in perpetuity, tested against independent strategies that reveal systematic errors, and pinned to international standards.



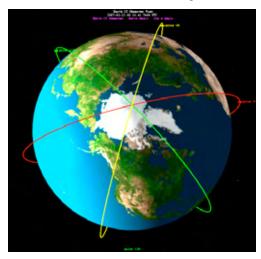
Mission Architecture Process

Architecture preparation is needed to formulate an optimal, consistent and realizable set of Science and Mission Objectives for a desired science investigation

An iterative process:

- Capture mission objective, science goals, science requirements; and sponsor's mission constraints (e.g., mission cost)
- Develop candidate architectures and ROM costs
- Iterate refine mission objective, science goals, science requirements

Pre-Workshop Efforts


- Investigate high-level mission architecture options to aid CLARREO science discussions and requirements refinement
 - Develop architecture options based on Decadal Survey goals and requirements
- Identify areas for discussion where further definition will enable mission architecture refinement
 - Identify key mission attributes, which drive mission implementation

CLARREO NASA Mission Concept

KEY MISSION ATTRIBUTES

Orbital Concept

Mission Concept

- Benchmark accuracy of radiance climate measurements
 - 0.1 K brightness temperature accuracy
 - Tied to NIST standards
- Spacecraft: 3 small satellites
- Launch Date: 2010 2013
- Orbits: Three true 90° polar with a 60° angular separation between planes at 750 km altitude
- Mission Duration: 3 years nominal
- Goal: extension into lengthy operational mission

Mission and Science Objectives

Climate Benchmarking

- Observe radiative forcing from greenhouse gases, aerosols, and clouds; and radiative response affecting atmospheric temperature, water vapor and cloud distribution through IR Earth-emitted radiance measurements
- Observe climate changes in snow cover, sea ice, land use, aerosols, and cloud properties through reflected solar radiance measurements

Observation Calibration/Validation

- Observe temperature and water vapor and determine systematic error in the climate record by observing atmospheric refraction with GNSS radio occultation
- Serve as a high accuracy calibration standard for use by operational sounders on-orbit

Instrument Summary

All 3 spacecraft carry:

Redundant IR Interferometers

- SI-traceable standard for absolute radiance
- 200-2000 cm⁻¹, 1 cm⁻¹ spectral resolution
- High level of absolute radiometric calibration

GPS: occultation GNSS receiver

- Accurate to 0.1 K traceable to SI standards on-orbit
- Limb sounding to profile refractive properties of atmosphere

1 spacecraft ALSO carries:

Redundant UV/VIS/NIR interferometers

- SI-traceable standard for absolute radiance
- 300-2000 nm, 15 nm spectral resolution

Key Mission Attributes

Mission Attributes Taken From Decadal Survey	Impact on Mission Implementation	
	Requires procurement of three satellite buses	
3 Small Satellites	Impacts either number of launch vehicles or acceptable bus configurations	
90° polar; 60° orbital plane separation at 750 km altitude	Lessens possibility for flying instruments on other Earth science platforms	
	Non-sun-sync orbits drive thermal and power requirements, can impact instrument stability	
	Separation of orbital planes requires separate launches or potentially relatively large propulsion systems to achieve desired orbits (see poster) Longth of time to reach phaging configuration.	
- Length of time to reach observing configuration Fach Instrument is duplicated (x2) per Increases mission cost		
Each Instrument is duplicated (x2) per Spacecraft	Drives power, mass and volume requirements	
< 0.1 K Instrument Radiometric	Drives instrument design	
Accuracy	Drives spacecraft thermal and sun orientation requirements	
Absolute Radiometric Cross- Calibration of IR Sensors	Drives the cal/val program	
	Drives instrument design	
	Drives orbit considerations	
Far infrared	Drives instrument cost (technology readiness and possible detector cooling)	
	Drives power requirements on instrument and spacecraft	

Key Mission Attributes (cont'd)

Mission Attributes Taken From Decadal Survey	Impact on Mission Implementation	Science Impact of Modifying Requirements
3 Small Satellites	Requires procurement of three satellite buses Impacts either number of launch vehicles or acceptable bus configurations	
 • Lessens possibility for flying instruments on other Earth science platforms • Non-sun-sync orbits drive thermal and power requirements, can impact instrument stability • Separation of orbital planes requires separate launches or potentially relatively large propulsion systems to achieve desired orbits (see poster) Length of time to reach observing configuration 		To be determined by Science Community
Carrying Two of Each Instrument per Spacecraft	Increases mission cost Drives power, mass and volume requirements	Workshop breakout groups are part of this
< 0.1 K Instrument Radiometric Accuracy	Drives instrument design Drives spacecraft thermal and sun orientation requirements	
Absolute Radiometric Cross- Calibration of IR Sensors	Drives the cal/val program Drives instrument design Drives orbit considerations	process
Far Infrared	Drives instrument cost (technology readiness and detector cooling) Drives power requirements on instrument and spacecraft	

Mission Attributes for Discussion

Can the CLARREO mission objectives possibly be met with alternative mission implementations?

Open Questions to the Working Groups:

- a) How firm is the requirement for 0.1 K accuracy (What are the science impacts if this is relaxed)?
- b) What type of redundancy is required to achieve science objectives? (Is this for risk reduction or to meet science objectives?)
- c) Is there flexibility in orbit choice?
- d) Can we achieve science objectives with < 3 spacecraft?
- e) What pointing control, stability and accuracy is required? Is a gravity gradient approach sufficient?
- f) What is the level of necessary calibration for the IR Interferometers, other interferometers?
- g) How firm is the requirement to use CLARREO to calibrate other sounders? (And what are the science and instrument requirements to achieve that?)
- h) What partnerships and/or other available asset utilization can we pursue?

We are here to help provide perspective on how different mission science and instrument requirements will drive mission implementation, cost and technology risk